Plant developmental dynamics can be heritable, genetically correlated with fitness and yield, and undergo selection. Therefore, characterizing the mechanistic connections between the genetic architecture governing plant development and the resulting ontogenetic dynamics of plants in field settings is critically important for agricultural production and evolutionary ecology. We use hierarchical Bayesian Function-Valued Trait (FVT) models to estimate Brassica rapa growth curves throughout ontogeny, across two treatments, and in two growing seasons. We find genetic variation for plasticity of growth rates and final sizes, but not the inflection point (transition from accelerating to decelerating growth) of growth curves. There are trade-offs between growth rate and duration, indicating that selection for maximum yields at early harvest dates may come at the expense of late harvest yields and vice versa. We generate eigengene modules and determine which are co-expressed with FVT traits using a Weighted Gene Co-expression Analysis. Independently, we seed a Mutual Rank co-expression network model with FVT traits to identify specific genes and gene networks related to FVT. GO-analyses of eigengene modules indicate roles for actin/cytoskeletal genes, herbivore resistance/wounding responses, and cell division, while MR networks demonstrate a close association between metabolic regulation and plant growth. We determine that combining FVT Quantitative Trait Loci (QTL) and MR genes/WGCNA eigengene expression profiles better characterizes phenotypic variation than any single data type (i.e. QTL, gene, or eigengene alone). Our network analysis allows us to employ a targeted eQTL analysis, which we use to identify regulatory hotspots for FVT. We examine cis vs. trans eQTL that mechanistically link FVT QTL with structural trait variation. Colocalization of FVT, gene, and eigengene eQTL provide strong evidence for candidate genes influencing plant height. The study is the first to explore eQTL for FVT, and specifically do so in agroecologically relevant field settings.
Also a goodbye party for Dan Fulop, Amanda Schrager-Lavelle and Mike Covington
Quantitative Trait Locus (QTL) mapping is a powerful technique for dissecting the genetic basis of traits and species differences. Established tomato mapping populations between domesticated tomato (Solanum lycopersicum) and its more distant interfertile relatives typically follow a near isogenic line (NIL) design, such as the Solanum pennellii Introgression Line (IL) population, with a single wild introgression per line in an otherwise domesticated genetic background. Here we report on a new advanced backcross QTL mapping resource for tomato, derived from a cross between the M82 tomato cultivar and S. pennelli This so-called Backcrossed Inbred Line (BIL) population is comprised of a mix of BC2 and BC3 lines, with domesticated tomato as the recurrent parent. The BIL population is complementary to the existing S. pennellii IL population, with which it shares parents. Using the BILs we mapped traits for leaf complexity, leaflet shape, and flowering time. We demonstrate the utility of the BILs for fine-mapping QTL, particularly QTL initially mapped in the ILs, by fine-mapping several QTL to single or few candidate genes. Moreover, we confirm the value of a backcrossed population with multiple introgressions per line, such as the BILs, for epistatic QTL mapping. Our work was further enabled by the development of our own statistical inference and visualization tools, namely a heterogeneous Hidden Markov Model for genotyping the lines, and by using state of the art sparse regression techniques for QTL mapping.
Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance.
Shade from neighboring plants limits light for photosynthesis; as a consequence, plants have a variety of strategies to avoid canopy shade and compete with their neighbors for light. Collectively the response to foliar shade is called the shade avoidance syndrome (SAS). The SAS includes elongation of a variety of organs, acceleration of flowering time, and additional physiological responses, which are seen throughout the plant life cycle. However, current mechanistic knowledge is mainly limited to shade-induced elongation of seedlings. Here we use phenotypic profiling of seedling, leaf, and flowering time traits to untangle complex SAS networks. We used over-representation analysis (ORA) of shade-responsive genes, combined with previous annotation, to logically select 59 known and candidate novel mutants for phenotyping. Our analysis reveals shared and separate pathways for each shade avoidance response. In particular, auxin pathway components were required for shade avoidance responses in hypocotyl, petiole, and flowering time, whereas jasmonic acid pathway components were only required for petiole and flowering time responses. Our phenotypic profiling allowed discovery of seventeen novel shade avoidance mutants. Our results demonstrate that logical selection of mutants increased success of phenotypic profiling to dissect complex traits and discover novel components.
Laksmhidevi, Christina, and Amanjot present their work. Nice Job!
The mapping and functional analysis of quantitative traits in Brassica rapa can be greatly improved with the availability of physically positioned, gene-based genetic markers and accurate genome annotation. In this study, deep transcriptome RNA sequencing (RNA-Seq) of Brassica rapa was undertaken with two objectives: SNP detection and improved transcriptome annotation. We performed SNP detection on two varieties that are parents of a mapping population to aid in development of a marker system for this population and subsequent development of high-resolution genetic map. An improved Brassica rapa transcriptome was constructed to detect novel transcripts and to improve the current genome annotation. This is useful for accurate mRNA abundance and detection of expression QTL (eQTLs) in mapping populations. Deep RNA-Seq of two Brassica rapa genotypes-R500 (var. trilocularis, Yellow Sarson) and IMB211 (a rapid cycling variety)-using eight different tissues (root, internode, leaf, petiole, apical meristem, floral meristem, silique, and seedling) grown across three different environments (growth chamber, greenhouse and field) and under two different treatments (simulated sun and simulated shade) generated 2.3 billion high-quality Illumina reads. A total of 330,995 SNPs were identified in transcribed regions between the two genotypes with an average frequency of one SNP in every 200 bases. The deep RNA-Seq reassembled Brassica rapa transcriptome identified 44,239 protein-coding genes. Compared with current gene models of B. rapa, we detected 3537 novel transcripts, 23,754 gene models had structural modifications, and 3655 annotated proteins changed. Gaps in the current genome assembly of B. rapa are highlighted by our identification of 780 unmapped transcripts. All the SNPs, annotations, and predicted transcripts can be viewed at http://phytonetworks.ucdavis.edu/.
Although applied over extremely short timescales, artificial selection has dramatically altered the form, physiology, and life history of cultivated plants. We have used RNAseq to define both gene sequence and expression divergence between cultivated tomato and five related wild species. Based on sequence differences, we detect footprints of positive selection in over 50 genes. We also document thousands of shifts in gene-expression level, many of which resulted from changes in selection pressure. These rapidly evolving genes are commonly associated with environmental response and stress tolerance. The importance of environmental inputs during evolution of gene expression is further highlighted by large-scale alteration of the light response coexpression network between wild and cultivated accessions. Human manipulation of the genome has heavily impacted the tomato transcriptome through directed admixture and by indirectly favoring nonsynonymous over synonymous substitutions. Taken together, our results shed light on the pervasive effects artificial and natural selection have had on the transcriptomes of tomato and its wild relatives.
The Maloof Lab is in the Department of Plant Biology at the University of California, Davis.
Because plants are rooted in place they have a remarkable ability to withstand a wide range of environmental conditions. They do so by altering their growth, development and physiology to suit their current environment. We are interested in determining the genes and mechanisms underlying this fascinating phenotypic plasticity and how the genetic pathways have changed over time to allow adaptation to different environments.
To achieve these goals we use molecular and quantitative genetics and genomics techniques coupled with bioinformatics and statistical analyses. We work with the tomato species complex, Brassica rapa, and Arabidopsis.