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The shade avoidance response (SAR) in crops can be

detrimental to yield, as precious carbon resources are

redirected to stem or petiole elongation at the expense of

biomass production. While breeding efforts have inadvertently

attenuated this response in staple crops through correlated

selection for yield at high density, it has not been eliminated.

The extensive work done in Arabidopsis has provided a

detailed understanding of the SAR and can be used as a

framework for understanding the SAR in crop species. Recent

crop SAR works point to auxin as a key factor in regulating the

SAR in several crop species. These works also clearly

demonstrate that one model for crop SAR will not fit all, and

thus we need to move forward with studying the genetic players

of the SAR in several model crop species. In this review, we

provide the current knowledge of the SAR as reported at the

physiological and molecular levels.
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Introduction
For plants adapted to open ranges, encroaching neighbors

are perceived as competitors for light and can induce an

adaptive response to escape canopy shade via the elon-

gation of stem and petioles [1–3]. This complex phenom-

enon, known as the shade avoidance response (SAR),

involves the modulation of transcriptional and metabolic

networks to support shade-mediated growth. A classical

SAR also includes reduced branching, reduced biomass,

increased height, decreased leaf number, higher specific

leaf area, lower chlorophyll a/b ratio, decreased photo-

assimilation rates, and reduction in yield per plant [4,6–9,

10��,11��,12]. However, induction of the SAR in crops is

not without negative consequences — resources are
www.sciencedirect.com 
diverted from agronomically important tissues to support

stem elongation [9,12].

Ensuring yield stability under an array of environmental

conditions is a modern breeding concern in our changing

environment [13–16]. While domestication has attenuat-

ed the SAR through selection for yield at high density, it

has not been fully eliminated [9,11��,12,17–19]. Continu-

ing to reduce the SAR may allow growers to increase plant

density in an effort to increase harvest index, or may

provide higher yield at current densities. However it has

been argued that retaining some shade avoidance plastic-

ity may be beneficial for young crop plants competing

with weeds for light [13]. Currently, our knowledge of the

crop SAR is limited to its negative impact on biomass or

yield, with little understanding of how it is controlled at

the genetic and molecular levels. Here we argue that (1)

while Arabidopsis has served as an excellent model sys-

tem to dissect the genetic basis of the SAR, much remains

to be gained from this system to better understand how

the SAR is negatively regulated and (2) we also must

strive to expand our knowledge into important crop

species with distinct plant architectures. In this manu-

script, we review the current understanding of the mo-

lecular control of the SAR in Arabidopsis and in several

agronomically important crops.

Arabidopsis as a framework: neighbor
perception and signal integration
Plants detect the proximity of their neighbors via altera-

tions in ambient light spectra. In a canopy layer, red-light

(R) is absorbed preferentially by chlorophyll. Thus as

light passes through the leaf, R is depleted and the

spectrum becomes enriched in far-red (FR) light. This

alteration of R:FR is perceived by the family of photo-

convertible phytochrome photoreceptors [20] with acti-

vation of phytochrome by R (�660 nm) and inactivation

by FR (�730 nm). The photoconversion of phytochrome

is mediated by the covalently attached bilin chromo-

phore; exposure to R converts phytochrome to the active

(Pfr) conformation, while FR reverts phytochrome it its

inactive, Pr form. Thus, phytochrome exists in a dynamic

equilibrium of active and inactive forms with the abun-

dance of each determined by the relative levels of R and

FR [21]. This regulation of the phytochrome pool is

essential for the proper regulation of growth, as inappro-

priate or excessive growth can lead to stem lodging or

mechanical injury and is detrimental to fitness [4,22].

Under R-rich ‘sun’ environments, active phytochrome

translocates into the nucleus from the cytosol and interacts

with and mediates the degradation of the growth promoting
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PHYTOCHROME INTERACTING FACTORS (PIFs)

[23–27]. This family of bHLH transcription factors acts as

the primary hub for a signaling cascade to promote cell

elongation [28]. Under ‘shade’ the active pool of phyto-

chrome decreases, thereby allowing for accumulation of

PIFs, namely PIF4, PIF5 and PIF7; which preferentially

activate E-box and G-box growth-promoting targets such as

those involved in the biosynthesis and transport of auxin,

gibberellins, brassinosteroids, cytokinins and ethylene

[28–36,37��]. Specifically, auxin modulates cell wall remo-

deling and cell elongation via regulation of expansins

and xyloglucan endotransglucosylase/hydrolases (XTHs)

[38–40,41��]. The Arabidopsis SAR model can play an

integral role in furthering our understanding of the SAR,

and also learning the different mechanisms controlling the

SAR employed by different species.

Crop shade avoidance response:
physiological and developmental changes
Cereal crops: shoot architecture modification in SAR

In cereals, SAR reduces lateral branching and also can

have a negative impact on biomass and grain production

[12,42��]. Light mediated regulation of lateral branching,

or tillers, is complex involving transcriptional regulators,

hormone signaling pathways and cell-cycle regulation

[5,42��,43–48]. Figure 1 depicts a proposed model regu-

lating tiller bud growth under shade via phyB in sorghum,

a staple crop in Africa and Asia, and a forage and bioe-

nergy crop in North America. phyB is proposed to regu-

late tiller bud growth via repression of a transcriptional

regulator, TEOSINTE BRANCHED 1 (TB1); TB1

activates a class I HD-ZIP transcriptional regulator,

GRASSY TILLERS 1 (GT1), which represses tiller

production in maize and sorghum [5,45–47]. Thus, in

the shade, reduction of phyB activity allows accumulation

of TB1 and then GT1, leading to reduced tiller outgrowth

[5,45]. These two transcriptional regulators have been

identified as major domestication QTL that have altered

plant architecture in maize and sorghum [5,49]. For
Figure 1
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Proposed model for tiller bud growth promotion in sorghum. Adapted

from Kebrom et al. (2010) and Whipple et al. (2011). Abbreviations:

phytochrome B, phyB; TEOSINTE BRANCHED 1, TB1; GRASSY

TILLERS1, GT1; MORE AXILLARY BUD GROWTH, MAX; DORMANCY

ASSOCIATED GENE 1 (DRM1).
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instance, the domestication of maize from teosinte in-

volved selecting for plants with shorter branches and ears

at the tips of branches instead of tassels [49]; as a conse-

quence alleles of TB1 with higher expression were

enriched during domestication.

Tiller bud growth is also repressed indirectly by strigo-

lactone signaling and auxin via repression of cytokinin

[45–47,50]. Additional downstream mechanisms implicat-

ed in tiller production include MORE AXILLARY BUD

GROWTH 1, 2 (MAX1) and MAX2, believed to play a

role either in the perception or signal transduction of

strigolactones, which act downstream of auxin and up-

stream of DORMANCY ASSOCIATED GENE 1

(DRM1), a marker negatively correlated with bud out-

growth [46,51,52]. In sorghum, shade increases expression

of MAX2. Additionally, in sorghum phyB mutants, MAX2

and DRM1 gene expression is elevated, suggesting that

shade may also increase the expression of these two genes

involved in repression of tiller bud outgrowth [45,50].

Compared to wild-type sorghum, axillary buds of phyB
mutants show an increase in expression of a cytokinin

deactivating gene, cytokinin oxidase/dehydrogenase

(CKX1) and also auxin-responsive SAUR genes, suggest-

ing that reduced cytokinin levels and increased auxin

response may also regulate axillary bud outgrowth [50].

While it has not been proven in sorghum, DRM1 is

negatively regulated by auxin in pea, Pisum sativum [45,51].

Tiller reduction under the SAR negatively impacts bio-

mass production for bioenergy crops [42��]. To address

this, it has been proposed that biomass production can be

increased at high densities via a reduction in shade-

induced expression of the aforementioned GT1 [5].

Warnasooriya and Brutnell [42��] argue that the inherent

genome size, ploidy and generation time of major bioe-

nergy feed-stocks poses a challenge for crop improvement

and thus propose the use of a fast reproducing, diploid,

wild crop progenitor, Setaria viridis as a model for bioe-

nergy crops for the genetic dissection and manipulation of

carbon assimilation pathways under shade. Further, some

rice cultivars depend on tiller production to maintain

yield potential, suggesting that the negative regulation

of tillering under high planting densities has been select-

ed against during domestication of these varieties [45].

Therefore, if we are to modify the SAR in cereals for crop

improvement, modifications must be undertaken consid-

ering the architectural factors impacting yield in specific

cereal crops.

Tomato: internode elongation and leaf development

Recent work in tomato has demonstrated the impact of

the SAR on growth, development and leaf morphology,

and how these physiological responses are integrated with

gene expression [10��,11��,53–55]. Tomato displays or-

gan-specific SAR responses, with the greatest response in

the internodes [11��,55]. Cagnola and colleagues [55]
www.sciencedirect.com
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show that shade impacts gene expression patterns differ-

ently in each organ. For instance, genes upregulated in

the internodes are enriched for cell wall processes while

genes involved in photosynthetic translation are upregu-

lated in the leaves. They also showed that Calvin-Cycle

genes, and hence stem photosynthetic capacity, are

downregulated in stem tissue in response to shade. It

is also reported that stem chlorophyll, carotenoid and

jasmonic acid content are also reduced in FR treated

stems, suggesting that this allows for a reduction in the

energetic cost of maintaining a longer stem [55]. These

experiments link likely tissue-specific differences in gene

expression and metabolism to developmental responses.

Bush and colleagues [11��] report that the SAR varies

among wild relatives of the cultivated tomato. Analysis of

the Solanum pennellii x M82 introgression line mapping

population [56] has elucidated the genetic basis for SAR

variation in these species. This work showed that the

tomato SAR is regulated by both positive and negative

repressors of the SAR, as some identified genotypes

showed either a greater or reduced shade sensitivity

phenotypic response to supplemental FR. Expression

quantitative trait locus (eQTL) analysis identified a group

of auxin-related genes that were correlated with the SAR.

These genes were down-regulated in shade tolerant lines

and up-regulated in the shade responders. This result,

along with a differential weighted gene co-expression

analysis showed that gene connectivity of auxin and light

signaling genes were most altered under shade, suggest-

ing that auxin plays a role in natural variation of the SAR

in tomato [11��]. Cagnola and colleagues [55] also

reported that auxin response genes are upregulated in

the internodes compared to the leaves in response to

shade, however they show that this does not translate to

increased production of indole-3-acetic acid (IAA) within

the respective organs. However, if auxin does in fact play

a role in mediating cell elongation in the internodes

compared to leaf tissue, it may be doing so by modulating

organ-specific sensitivity to auxin.

Chitwood and colleagues [10��] performed a meta-analy-

sis on the morphological consequences of short-term or

long-term exposure to shade. They report that while leaf

area remains plastic to shade signals throughout late

development, stomatal index and chlorophyll abundance

is determined early in leaf development. Further, they

found that alteration of leaf shape under shade is dictated

by expression of KNOX and other indeterminacy genes.

This study illustrates both developmental plasticity and

ultimately the long-lived impact shade can have on plant

physiology.

Potato: light signaling and tuber formation

In potato (Solanum tuberosum) phyB mediates photoperiod-

ic tuber induction [57,58]. Previous works determined that

overexpression of PHYB and downregulated expression of
www.sciencedirect.com 
PHYA results in improved yield and tuberization frequency

under shade, respectively [59–61]. Potato is shade respon-

sive, displaying increased internode and stem elongation

[62]. This response is mediated by phyB and, in part, by a

plasma membrane bound potato SUCROSE TRANS-

PORTER, (St-SUT4); whose expression is highest in sink

organs such as flowers and developing tubers and is circa-

dian regulated [62]. Under shade, St-SUT4 levels are

elevated due to stabilization of the St-SUT4 transcript

[63,64��]. RNA interference (RNAi) knockdown of St-

SUT4 results in reduced plant height, accelerated flower-

ing and increased tuber yield under normal conditions.

Further, St-SUT4 RNAi lines were insensitive to low

R:FR. In potato St-SUT4, like phyB, is known to repress

early flowering and tuber development under long day

conditions [59,62]. St-SUT4 RNAi lines did not demon-

strate decreased phyB expression, suggesting that St-SUT4

works downstream of phyB to aid repression of early

flowering and tuber development [62]. The proposed mod-

el implicates St-SUT4 to work upstream of Gibberellic

Acid (GA) biosynthesis [62]. While Chinchineska and

colleagues [62] did not investigate tuber yield of the RNAi

St-SUT4 lines under ‘shade’, they did show that knock-

down of St-SUT4 results in increased tuber yield under

green-house conditions in spite of decreased leaf produc-

tion. This work shows that modifying genes downstream of

phyB may be useful in the modification of the SAR and can

also improve yield characteristics in potato.

Sunflower: organ specific responses and hormone

production

Under low R:FR, sunflower plants divert their carbon

resources into stem elongation rather than seed yield [9].

Investigation of the effect light quality has on hormone

abundance in sunflower showed that increased levels of

GA and IAA phytohormones were positively correlated

with stem elongation, but not leaf growth — suggesting

that the leaf can act as an additional source of hormone

production and that hormones are transported to areas of

active stem elongation [65].

Legumes: auxin and cultivar-dependent SAR

Soybean

Soybean, Glycine max, mounts a classic shade avoidance

response including elongated internodes, reduced

branching, reduced biomass, increased height, decreased

leaf number, higher specific leaf area, lower chlorophyll

a/b ratio, decreased photoassimilation rates, and reduction

in per-plant yield in the OAC 1-26 soybean background

[6–8]. In corroboration with studies performed in maize,

this reduction in yield on a per plant basis does not

significantly alter the harvest-index (seed weight divided

by total biomass) because both total biomass and total

seed weight are reduced proportionally [9,7]. Other soy-

bean SAR studies using the AG1631, Harosoy, and Maple

Presto cultivars have shown that the SAR can be cultivar

dependent. For instance, one particular study led by
Current Opinion in Plant Biology 2016, 30:151–158
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Figure 2
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Negative regulation of the shade avoidance response in Arabidopsis.

Abbreviations: ELONGATED HYPOCOTYL 5HYH; HY5

HOMOLOGHYH; PHYTOCHROME INTERACTING FACTOR, PIF; PIF3-

LIKE 1, PIL1; LONG HYPOCOTYL IN FAR-RED LIGHT 1, HFR1;

PHYTOCHROME RAPIDLY REGULATED (PAR); Arabidopsis thaliana

homeobox domain 2, ATHB2; flavin monooxygynase-like enzyme,

YUCCA.
Cober and colleagues [66], showed that shade delays,

rather than accelerates, flowering in the tested cultivar,

and Horvath and colleagues [67�] report that ‘shade’

decreases, rather than increases, plant height in AG1631.

Working with the AG1631 cultivar, Horvath and collea-

gues [67�] also investigated the effect of weed-crop

competition on the mRNA expression levels of the soy-

bean PIF3a, and found that GmPIF3a is strongly up-

regulated in response to weed competition, and that

removal of competition reduces GmPIF3a levels. While

this result suggests the involvement of the PIFs in the SAR

in other species, it should be noted that plant stature was

reduced in response to competition, suggesting that if

GmPIF3a is functions in the light-signaling pathway, it

may be a repressor of growth, contrasting with the role of

PIF3 in Arabidopsis. Additionally, it should be noted that

Arabidopsis PIFs are post-transcriptionally regulated; if the

same is true in soybean then transcriptional abundance

may not be relatable to PIF protein levels [28].

Lotus japonicus

Auxin has also been shown to be a key regulator of the

SAR in the model legume species, Lotus japonicus. Not

only does L. japonicus display several of the classical shade

avoidance syndromes including elongated internodes,

early flowering, and reduction in lateral branching, but

homologs of known SAR auxin regulatory factors, an

Arabidopsis homeobox domain-containing transcription

factor, ATHB2, and IAA29, are upregulated under shade

[32,68–70].

Conserved and unique manifestations of SAR
across plant species
In both monocots and dicots, shade inhibition of axillary

bud growth is mediated by the transcriptional regulator

TB1 (monocots) and its homologs BRC1 and BRC2

(dicots) [46,71]. Similar to monocots, auxin and strigolac-

tones inhibit axillary bud growth in Arabidopsis and play

antagonistic roles with respect to growth-promoting cyto-

kinins (Figure 1) [30,71–73]. The similarity of bud out-

growth inhibition in response to shade between these two

systems shows that this genetic mechanism is organ-

specific and also may be conserved across species. How-

ever, it has not been reported whether an Arabidopsis

GT1 homolog is also implicated in the axillary bud

growth, suggesting that this might be monocot-specific

regulator involved in this process. Additionally, abscisic

acid (ABA) is also involved in inhibiting bud outgrowth

under shade conditions in Arabidopsis, a pathway that has

not been demonstrated to date to control tiller outgrowth

in monocots [50,74]. Currently, little work has demon-

strated the role that the PIFs have outside of Arabidopsis.

In rice, Oryza sativa, six PIF-like (PIL) homologs have

been identified [75]. OsPIL15 has been shown to play a

role in seedling photomorphogenic responses, and has

also been shown to play a role in mediating red and far-red
Current Opinion in Plant Biology 2016, 30:151–158 
light responses [76]. However, it has not been well

documented what role the PIFs, HFR1 and PAR1 and

PAR2 play in crop mediated SAR responses as known

from Arabidopsis studies. An example of a species-spe-

cific response is tomato. It is well accepted that Arabi-

dopsis SAR includes an increase in the production of

auxin. However, while auxin responsive genes may be

differentially expressed in tomato, this is not reflective of

an increase in auxin production in shade, suggesting

differences in sensitivity to auxin if this hormone is in

fact playing a role in mediating tomato SAR [55]. One of

the challenges that we currently face as a community

moving into new model systems is that we can be limited

in our interpretation and understanding of species-spe-

cific responses based on Arabidopsis gene annotation or

the ability to functionally test newly discovered genes

within the model crop system.

Dissecting negative regulation of the SAR
One way that we can potentially increase yield through

higher crop-planting densities is to finely dissect and

enhance the negative regulation of the SAR, thereby

reducing shade sensitivity. In Arabidopsis, the negative

regulation of SAR serves as a means to prevent untimely

or excessive SAR, which can negatively impact plant

fitness [1,2]. PIF4 and PIF5 have been shown to activate

several of their own negative regulators, including LONG

HYPOCOTYL IN FAR-RED LIGHT-1 (HFR1), PHY-

TOCHROME RAPIDLY REGULATED-1 (PAR1) and

its homolog, PAR2 [30,34,77]. Figure 2 depicts two inde-

pendent modes of negative regulation of the SAR in

Arabidopsis. HFR1 and PAR1, 2 homologs negatively

regulate the SAR via the formation of heterodimers with

PIF4, PIF5 and PIF3-LIKE1 (PIL1) that inhibit the

transcriptional activators ability to bind to DNA

[31,34,77–79]. The phyA signaling pathway is also involved
www.sciencedirect.com
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in the negative regulation of the SAR in Arabidopsis,

through the repression of ATHB2 via ELONGATED

HYPOCOTYL 5 (HY5) and also activation of HYH, ho-

molog of HY5, and HFR1, which also acts to repress

hypocotyl growth under shade [80��,81] (Figure 2).

These negative regulatory responses are likely to be

critical in multiple plant species, but it is unclear whether

the PIFs or the known negative regulators are similarly

implicated in mediating shade responses in the sampled

crop species discussed in this review. Identification of

shade tolerant lines suggest that tomato also has a means

to negatively regulate the SAR, which could pose an

advantageous model for other Solanaceous crops [11��].
It is possible that Arabidopsis has not been exhausted as a

resource to define the genes playing a role in the negative

regulation of the SAR. Shade-tolerant accessions of Ara-

bidopsis [82] may also prove useful in determining these

other factors as they may contain alternative pathways to

HFR1/PAR1.

Developmental consequences of the SAR
The genetic control of the SAR can vary based on the

developmental time at which SAR is induced. For in-

stance, while auxin is implicated in the SAR during

seedling, juvenile and flowering stages, jasmonic acid

only affects petiole elongation and promotion of flowering

under shade [83��]. Additionally, the tissues collected for

gene expression as reported by Cagnola and colleagues

[55] and Bush and colleagues [11��] come from two

distinct developmental time points; the former study

sampled mature internode and leaf tissue, whereas the

latter study sampled young, expanding tissues. This may

explain why the Calvin-Cycle genes were not differen-

tially expressed in the Bush and colleagues [11��] study.

Preferred targets for plant breeding: light
signaling and the SAR
Targeting the light-signaling pathway for crop improve-

ment has been the focus of several lines of research. As

reviewed in Gururani [59], one early approach was to

increase expression levels of phytochrome. Ectopic ex-

pression of PHYA and PHYB increases plant’s sensitivity

to light and can have dramatic pleiotropic effects. For

instance, over-expression of PHYA and PHYB results in

dark green, dwarfed plants in several species [59]. How-

ever, overexpression of PHYB and down-regulation of

PHYA has a positive effect on tuber yield in potato [59,61]

Additionally, overexpression of PHYA improves shade

tolerance in turf grass [59,84]. Overexpression of PHYA
in other crop species like tomato leads to darker fruit

pigmentation that can also alter fruit quality character-

istics [59,85]. Thus, ideal targets for the attenuation of the

shade avoidance response in crop species would be those

that have less pleiotropic effects and which likely act

downstream of phytochrome. For instance, specific down-

stream light signaling integrators such as PIF4, PIF5,
www.sciencedirect.com 
HFR1 and PAR1, PAR2 homologs (Figure 2) could be

attractive candidates for targeting via genetic engineering

or breeding. Loss of function Arabidopsis PIF mutants are

less sensitive to far-red light than wild type [86]. HFR1 is

known to bind to PIF4 thereby preventing PIF4 from

binding to its growth-promoting targets; as a consequence,

overexpression of HFR1 in Arabidopsis results in dwarfed

plants [87], illustrating the potential for HFR1 as a bioen-

gineering or breeding target. However, overexpression of

HFR1 is not without consequence; although overexpres-

sion of HFR1 does not alter developmental processes like

flowering time, it does result in plants with reduced chlo-

rophyll content [87,88�]. Additional preferable target genes

for increasing crop production at high densities will be

species and cultivar-dependent as well as dependent on

plant architecture. For instance, Whipple and colleagues

2011 suggested that fine-tuning the expression levels of

GT1 may offer an advantageous avenue for improving crop

yield. For biofuel and feedstock crops, it is possible that

decreasing expression of GT1 will allow for an increased

production of tillers and therefore biomass production

under high density planting [5].

Interaction of light signaling, the SAR and
biotic stress
Not only is phyB necessary to modulate appropriate

growth responses, it is also necessary for the maintenance

of plant innate immunity and defense against herbivory.

phyB mutants and FR-treated plants show that the im-

mune response can be weakened because of the corre-

sponding decreased response to jasmonic acid and

salicylic acid [89]. Thus an added benefit of controlling

the SAR can indirectly improve biotic resistance.

Is there such a thing as a ‘model’ organism to
study the SAR?
Arabidopsis SAR studies can still enhance our under-

standing of the regulation of the SAR mainly because

of the wealth of resources available within that particular

system. To date, we have a solid framework of how the

SAR promotes growth, but little knowledge of the mech-

anisms that confer shade tolerance. To this end, the

natural variation present among Arabidopsis can be used

to discover additional genes mediating shade tolerance,

and provide an additional framework for studying poten-

tial shade tolerance homologues in crop species. Howev-

er, finding a ‘one-general model fits all’ will be difficult,

mainly because not all crops are grown under the same

circumstances, not all plant growth traits are of equal

agronomic value across several crop species, and the

models we develop in crop plants must reflect that.
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